|
| 40: |
|
0(x) +# 0(y) |
→ 0#(x + y) |
| 41: |
|
0(x) +# 0(y) |
→ x +# y |
| 42: |
|
0(x) +# 1(y) |
→ x +# y |
| 43: |
|
1(x) +# 0(y) |
→ x +# y |
| 44: |
|
1(x) +# 1(y) |
→ 0#((x + y) + 1(#)) |
| 45: |
|
1(x) +# 1(y) |
→ (x + y) +# 1(#) |
| 46: |
|
1(x) +# 1(y) |
→ x +# y |
| 47: |
|
x +# (y + z) |
→ (x + y) +# z |
| 48: |
|
x +# (y + z) |
→ x +# y |
| 49: |
|
0(x) -# 0(y) |
→ 0#(x - y) |
| 50: |
|
0(x) -# 0(y) |
→ x -# y |
| 51: |
|
0(x) -# 1(y) |
→ (x - y) -# 1(#) |
| 52: |
|
0(x) -# 1(y) |
→ x -# y |
| 53: |
|
1(x) -# 0(y) |
→ x -# y |
| 54: |
|
1(x) -# 1(y) |
→ 0#(x - y) |
| 55: |
|
1(x) -# 1(y) |
→ x -# y |
| 56: |
|
GE(0(x),0(y)) |
→ GE(x,y) |
| 57: |
|
GE(0(x),1(y)) |
→ NOT(ge(y,x)) |
| 58: |
|
GE(0(x),1(y)) |
→ GE(y,x) |
| 59: |
|
GE(1(x),0(y)) |
→ GE(x,y) |
| 60: |
|
GE(1(x),1(y)) |
→ GE(x,y) |
| 61: |
|
GE(#,0(x)) |
→ GE(#,x) |
| 62: |
|
MIN(n(x,y,z)) |
→ MIN(y) |
| 63: |
|
MAX(n(x,y,z)) |
→ MAX(z) |
| 64: |
|
BS(n(x,y,z)) |
→ AND(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) |
| 65: |
|
BS(n(x,y,z)) |
→ AND(ge(x,max(y)),ge(min(z),x)) |
| 66: |
|
BS(n(x,y,z)) |
→ GE(x,max(y)) |
| 67: |
|
BS(n(x,y,z)) |
→ MAX(y) |
| 68: |
|
BS(n(x,y,z)) |
→ GE(min(z),x) |
| 69: |
|
BS(n(x,y,z)) |
→ MIN(z) |
| 70: |
|
BS(n(x,y,z)) |
→ AND(bs(y),bs(z)) |
| 71: |
|
BS(n(x,y,z)) |
→ BS(y) |
| 72: |
|
BS(n(x,y,z)) |
→ BS(z) |
| 73: |
|
SIZE(n(x,y,z)) |
→ (size(x) + size(y)) +# 1(#) |
| 74: |
|
SIZE(n(x,y,z)) |
→ size(x) +# size(y) |
| 75: |
|
SIZE(n(x,y,z)) |
→ SIZE(x) |
| 76: |
|
SIZE(n(x,y,z)) |
→ SIZE(y) |
| 77: |
|
WB(n(x,y,z)) |
→ AND(if(ge(size(y),size(z)),ge(1(#),size(y) - size(z)),ge(1(#),size(z) - size(y))),and(wb(y),wb(z))) |
| 78: |
|
WB(n(x,y,z)) |
→ IF(ge(size(y),size(z)),ge(1(#),size(y) - size(z)),ge(1(#),size(z) - size(y))) |
| 79: |
|
WB(n(x,y,z)) |
→ GE(size(y),size(z)) |
| 80: |
|
WB(n(x,y,z)) |
→ GE(1(#),size(y) - size(z)) |
| 81: |
|
WB(n(x,y,z)) |
→ size(y) -# size(z) |
| 82: |
|
WB(n(x,y,z)) |
→ GE(1(#),size(z) - size(y)) |
| 83: |
|
WB(n(x,y,z)) |
→ size(z) -# size(y) |
| 84: |
|
WB(n(x,y,z)) |
→ SIZE(z) |
| 85: |
|
WB(n(x,y,z)) |
→ SIZE(y) |
| 86: |
|
WB(n(x,y,z)) |
→ AND(wb(y),wb(z)) |
| 87: |
|
WB(n(x,y,z)) |
→ WB(y) |
| 88: |
|
WB(n(x,y,z)) |
→ WB(z) |
|
The approximated dependency graph contains 9 SCCs:
{61},
{63},
{62},
{41-43,45-48},
{75,76},
{50-53,55},
{56,58-60},
{71,72}
and {87,88}.